高精度实时时钟-SD2401E²PROM型 (V2.5)

内置晶振、EEPROM、充电电池、IIC 串行接口、多种中断输出、高精度、免调校

1. 概述

SD2401EEPROM 系列是一种具有内置晶振、EEPROM、IIC 串行接口的高精度实时时钟芯片,CPU 可使用该接口通过 5 位地址来寻址读写片内 32 字节的数据(包括时间寄存器、报警寄存器、控制寄存器、通用 SEEPROM 寄存器)。

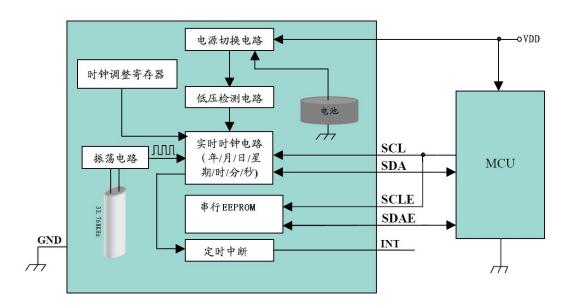
SD2401EEPROM 系列芯片可保证时钟精度为 \pm 5ppm(在 25 ± 1 °C下),即年误差小于 2.6 分钟;内置充电电池及充电电路,在电池满充、主电源下电的常温条件下内部时钟走时可维持半年左右时间,累计电池电量近 550mAh,常温下电池使用寿命 $5\sim8$ 年;内部具备电源切换电路,当芯片检测到主电源 V_{10} 掉到充电电池电压以下,芯片会自动转为由充电电池供电。

SD2401EEPROM 系列芯片內置单路定时/报警中断输出,报警中断时间可最长设至 100 年;该系列芯片可满足对实时时钟芯片的各种需要,有工业级产品可供选择,且管脚与以前的 SD2000A 兼容,是在选用高精度实时时钟时的理想选择。

2. 主要性能特点:

- 低功耗: 典型值 1.1 μ A (内部电池供电 3.0V, Ta=25℃)。
- 工作电压: 3.3V~5.5V,工作温度: 民用级 0℃~70℃,工业级-40℃~85℃。
- 标准 IIC 总线接口方式, 最高速度 400kHZ。
- 年、月、日、星期、时、分、秒的 BCD 码输入/输出, 并可通过独立的地址访问各时间寄存器。
- 闰年自动调整功能(从 2000 年~2099 年)。
- 可选择 12/24 小时制式。
- 三种中断,均可选择从 INT 脚输出,并具有两个中断标志位。
- 可设定并自动重置的单路报警中断功能(时间范围最长设至100年),年、月、日、星期、时、分、秒报警共有96种组合方式,并有单事件报警和周期性报警两种中断输出模式。
- 周期性频率中断输出:从32768Hz~1/16Hz······1 秒共十五种方波脉冲。
- 自动重置的 8 位倒计时定时器, 可选择 4 种时钟源(4096HZ、64HZ、1HZ、1/60HZ)。
- 内置时钟精度数字调整功能,可通过程序来调整走时的快慢。用户采用外置的温度传感器,设 定适应温度变化的调整值,可实现在宽温范围内高精度的计时功能。
- 12Bytes 通用 SRAM 寄存器可用于存储用户的一般数据。
- 内置 2kbit~256kbit 的非易失性 EEPROM(F/B/C/D/E 型),可在 3. 3V~5.5V 下工作,擦写次数可 达 100 万次,数据保存时间为十年。
- 内置充电电池及充电电路,常温下累计电池电量近550mAH、电池使用寿命为5~8年时间。
- ◆—外加后备电池输入脚 V_{kt}: 当内部电池因寿命等原因报废时, 可用外加的电池给时钟作备电。
- 内置 IIC 总线 0.5 秒自动复位功能(从 Start 命令开始计时), 保证时钟数据的有效性及可靠性, 避免 IIC 总线挂死问题。
- 内置三个时钟数据写保护位,避免对数据的误写操作,可更好地保护时钟数据。
- 内置 V_{BAT}模式 IIC 总线通信禁止功能,从而避免在电池供电时 CPU 对时钟操作所消耗的电池电量, 也可避免在主电源上、下电的过程中因 CPU 的 I/O 端口所输出的不受控的杂波信号对时钟芯片 的误写操作,进一步提高时钟芯片的可靠性。
- 内置电源稳压, 内部计时电压可低至 1.5V。
- 内置上电复位电路及指示位。
- 芯片管脚 ESD>4KV。

- 芯片在兴威帆的评估板上可通过 4KV 的群脉冲(EFT)干扰。
- CMOS 工艺
- 内置晶振,出厂前已对时钟进行校准,保证精度±5ppm,即时钟年误差小于 2.6 分钟(在 25±1℃下)。
- 有工业级型号, 其尾缀加"I"以示区分, 如"SD2401FLPI"为 SD2401FLP 的工业级, "P"标志为直插封装形式。


3. 管脚设置

SD2401EEPROM 系列芯片管脚图 SD2401EEPROM 系列管脚功能表

	SD2401EE1 KOM STYLE MAN BEA	
标号	功能	特征
V_{BAT}	外加备用电池引脚	针对 SD2401 系列,由于在模块内
		部有电池,故在其电池能量未耗尽
		之前不接
TEST	测试	内部电池电压检测脚(通常不接)
SCL	串行时钟输入脚,由于在 SCL 上升/下降沿处理信	CMOS 输入
	号,要特别注意 SCL 信号的上升/下降升降时间,	
	应严格遵守说明书。	
SDA	串行数据输入/输出脚,此管脚通常用一电阻上拉至	N沟道开路输出,CMOS输入
	VDD,并与其它漏极开路或集电器开路输出的器件通过	
	线与方式连接.	
INT	报警中断输出脚,根据中断寄存器与状态寄存器	N-沟道开路输出
	来设置其工作的模式,当定时时间到达时输出低	
	电平或时钟信号。它可通过重写状态寄存器来禁	
	止	
	EEPROM 串行时钟输入脚,由于是在 SCLE 时钟	
SCLE	输入信号的上升边缘和下降边缘来进行。因此请	CMOS 输入。
	注意上升和下降时间,并遵守技术规范。	
	EEPROM 串行数据输入/输出脚,此管脚通常用一	
SDAE	电阻上拉至 VDD, 并与其它漏极开路或集电器开	N沟道开路输出。
	路输出的器件通过"或"方式连接。	
$ m V_{out}$	3.0V 稳压输出脚	可供电流≤30mA, 电压精度 3.0V
V OUT	3.0 V 化水压相 山 净	±2%
VDD	正电源	
GND	负电源(GND)	

4. 原理框图

SD2401EEPROM系列功能框图

注:以上各图中SDA、SCL、INT对VDD上拉电阻均未标出,实际应用中要加上。

5. 寄存器

5.1 寄存器列表

			10 7374									
地	寄存	寄存器名				В	T				数值范围	缺省值
址	器段	称	D7	D6	D5	D4	D3	D2	D1	DO	(十进制)	(二进制)
00Н		秒	0	S40	S20	S10	S8	S4	S2	S1	0-59	XXXX-XXXX
01H		分钟	0	MN40	MN20	MN10	MN8	MN4	MN2	MN1	0-59	XXXX-XXXX
02Н	实时 时钟	小时	12_/24	0	H20 P/A_	Н10	Н8	H4	Н2	H1	0-23	XXXX-XXXX
03Н	寄存	星期	0	0	0	0	0	W4	W2	W1	0-6	XXXX-XXXX
04H	器		0	0	D20	D10	D8	D4	D2	D1	1-31	XXXX-XXXX
05H		月	0	0	0	MO10	M08	MO4	MO2	MO1	1-12	XXXX-XXXX
06H		年	Y80	Y40	Y20	Y10	Υ8	Y4	Y2	Y1	0-99	XXXX-XXXX
07H		秒报警	0	AS40	AS20	AS10	AS8	AS4	AS2	AS1	0-59	0000-0000
08H		分钟报警	0	AMN40	AMN20	AMN10	AMN8	AMN4	AMN2	AMN1	0-59	0000-0000
09Н	时间	小时报警	0	0	AH20 AP/A_	AH10	АН8	AH4	AH2	AH1	0-23	0000-0000
OAH	探書 寄存	星期报警	0	AW6	AW5	AW4	AW3	AW2	AW1	AWO	N/A	0000-0000
0BH	- 항() - 항()	日报警	0	0	AD20	AD10	AD8	AD4	AD2	AD1	1-31	0000-0000
ОСН	68	月报警	0	0	0	AMO10	AMO8	AMO4	AMO2	AMO1	1-12	0000-0000
ODH		年报警	AY7	AY6	AY5	AY4	AY3	AY2	AY1	AY0	0-99	0000-0000
0EH		报警允许	0	EAY	EAMO	EAD	EAW	EAH	EAMN	EAS	N/A	0000-0000
0FH	控制	CTR1	WRTC3	0	INTAF	INTDF	0	WRTC2	0	RTCF	N/A	0000-0000

10H	寄存	CTR2	WRTC1	IM	INTS1	INTS0	FOBAT	INTDE	INTAE	INTFE	N/A	0000-0000
11H	器	CTR3	ARST	0	TDS1	TDS0	FS3	FS2	FS1	FS0	N/A	0000-0000
12H		时间调整	0	F6	F5	F4	F3	F2	F1	F0	N/A	0000-0000
13Н		倒计时定 时器	TD7	TD6	TD5	TD4	TD3	TD2	TD1	TD0	0-255	0000-0000
14~ 1FH	通用 RAM	(12Bytes)	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	N/A	XXXX-XXXX

5.2 实时时钟数据寄存器(00H~06H)

实时时钟数据寄存器是 7 字节的存储器,它以 BCD 码方式存贮包括年、月、日、星期、时、分、秒的数据。

年数据[06H 地址] (00~99): 设置千年(20XX)的后两位数字(00~99),通过自动日历

功能计至 2099 年。(注意: 2000 年为闰年)

月数据[05H 地址(01~12):每月包含的天数通过自动日历功能来更改。

1,3,5,7,8,10,12: 1~31

4,6,9,11: 1~30

2(闰年): 1~29

2(普通): 1~28

日数据[**04H** 地址] (01~31)

星期数据[03H 地址] (00~06): 七进制计数器,00 对应星期天,01 对应星期一,依次类推.

小时数据[02H 地址] (00~23 或 00~11): 小时的最高位 12 /24 是 12 或 24 小时制选择位。

当 12_/24=1 时,24 小时制; 当 12_/24=0 时,12 小时制。

12 小时制时,H20 为 AM/PM 指示位,H20=0 为

AM,H20=1 为 PM,见下表:(位 H20H10H8H4H2H1)

24 小时显示系统	12 小时显示系统	24 小时显示系统	12 小时显示系统
00	12(AM12)	12	32(PM12)
01	01(AM1)	13	21(PM1)
02	02(AM2)	14	22(PM2)
03	03(AM3)	15	23(PM3)
04	04(AM4)	16	24(PM4)
05	05(AM5)	17	25(PM5)
06	06(AM6)	18	26(PM6)
07	07(AM7)	19	27(PM7)
08	08(AM8)	20	28(PM8)
09	09(AM9)	21	29(PM9)
10	10(AM10)	22	30(PM10)
11	11(AM11)	23	31(PM11)

注意: 当读取小时数据时,要屏蔽掉小时的最高位 12_/24,否则在 24 小时制时会因为 12_/24=1 而显示不对.

分数据[01 地址] (00~59)

秒数据[**00H** 地址] (00~59)

例如:设时间为 2006 年 12 月 20 日星期三 18 点 19 分 20 秒(24 小时制),则寄存器 $00\sim07H$ 的赋值应分别为 20h、19h、98h、03h、20h、12h、06h。要特别注意此处小时位的 赋值,因为是 24 小时制式,小时的 12_2 4 位=1,所以小时的赋值为 98h(1001 1000B)。

注:

- 1. 在上电复位时,芯片内部不对实时时钟数据寄存器作清零或置位处理。
- 2. 当写实时时间数据时(00H~06H),不可以单独对7个时间数据中的某一位进行写操

作,否则可能会引起时间数据的错误进位,所以要修改其中某一个数据,应一次性写入全部7个实时时钟数据.

3. 当芯片收到读实时时钟数据命令,则所有实时时钟数据被锁存(时钟走时并不受影响),此功能可以避免时间数据的错读现象。

5.3 **中断**(08H~13H 地址)

SD2401有3种不同的中断,它们由控制寄存器2(10H)中的位INTAE、INTFE、INTDE 位来使能:

1 4/74/1 (2) 4/74/(2) 4/74								
序	中断允许位	中断名	中断标志位					
号	(1=允许,0=禁止)	下 <i>则石</i>	(1=有中断,0=无中断)					
1	INTAE	报警中断	INTAF					
2	INTFE	频率中断	无					
3	INTDE	倒计时中断	INTDF					

中断允许位/标志位列表

当报警中断产生时,置中断标志位 INTAF 为 1;当倒计时中断产生时,置中断标志位 INTDF 为 1;频率中断没有标志位.标志位被置 1 后,需要手动清除.

三种中断都是以 INT 脚为输出脚, 通过控制寄存器 2 中的 INTS1、INTS0 位来选择确定 INT 脚输出何种中断:

序号	INTS1	INTS0	描述
0	0	0	禁止输出,高阻态
1	0	1	报警中断输出
2	1	0	频率中断输出
3	1	1	倒计时中断输出

INT 脚中断输出选通表

(1) 报警中断

当 INTAE=1 时报警中断被允许,报警中断何时发生由时间报警寄存器(07H~0EH)来确定。这其中 07H~0DH 依次用于存放报警时间的秒、分钟、小时、星期、日、月、年数据,除小时报警数据寄存器的最高位始终为"0"、星期位的定义不同以外,其它的格式与实时时钟寄存器相同。

0EH 为时间报警允许寄存器,如下:

BIT	D7	D6	D5	D4	D3	D2	D1	D0
位名(值)	0	EAY	EAMO	EAD	EAW	EAH	EAMN	EAS
报警允许		年	月		星期	小时	分钟	秒
拟言儿仔	-	(ODH)	(0CH)	(0BH)	(0AH)	(09H)	(H80)	(07H)

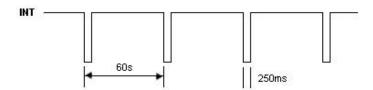
注:1=允许,0=禁止.

时间报警允许寄存器的使能位是用于确定哪些时间报警寄存器(秒、分钟等)需要与实时时钟寄存器之间作比较。当实时时钟运行时,一旦被允许的报警寄存器均与对应的实时时钟寄存器相匹配,就会触发一次报警中断,同时报警中断标志位 INTAF 位被置"1"。

特别:

- 1.当日报警与星期报警均被允许即 EAD=EAW=1 时,只有日报警有效,而星期报警 无效,所以时间报警中断共有 96 种组合方式。
 - 2.星期报警寄存器的数据格式与实时时钟数据星期的格式不同,星期报警寄存器的

位 AW6.AW5.AW4.AW3.AW2.AW1.AW0 分别对应星期六.星期五.星期四.星期三.星期二.星期一.星期一,并可多位置 1,例如 AW6,AW1=1,其它位为 0,则对应在星期六.星期一会有报警.


每一次对时间报警允许寄存器的写入都会清 INTAF 为"0".

当设置 INTS1=0、INTS0=1 时,即允许报警中断从 INT 脚输出.该报警中断有两种模式,即单事件报警和周期性报警,模式的选定由控制寄存器 2 中的报警中断模式位 IM的值来定:

IM 位	报警中断模式	INT 脚			
0	单事件报警	输出低电平直至 INTAF 位清零			
1	周期性报警	输出低电平有效、宽度为 250ms 的周期性脉冲直至			
1		INTAF 位清零			

为清除报警中断,可通过写操作将控制寄存器 1 的 INTAF 位置"0".但当 ARST 位置为"1",则在控制寄存器 1 被读取时,INTAF 位会自动清零. 举例:

1. 设寄存器 0EH=00000001B,秒报警寄存器 07H=20h,位 INTAE=1、IM=1、INTS1=0、INTS0=1,则每当时间秒数据进位到 20h 的时候,INT 脚都会输出宽度为 250ms 的低电平,即频率为 1 分钟的方波。如下图:

- 2. 设寄存器 0EH=00001111B,星期报警寄存器 0AH=0010 0110B,小时报警寄存器 09H=08h,分钟报警寄存器 08H=30h,秒报警寄存器 07H=00h,位 INTAE=1、IM=1、INTS1=0、INTS0=1,则每到星期一、星期二、星期五的 8 点 30 分 0 秒的时候,INT 脚都会输出宽度为 250ms 的低电平。
- 3. 设寄存器 0EH=00010111B,日报警寄存器 0BH=01h,小时报警寄存器 09H=08h,分钟报警寄存器 08H=30h,秒报警寄存器 07H=00h,位 INTAE=1、IM=1、INTS1=0、INTS0=1,则到每个月1号的8点30分0秒的时候,INT 脚都会输出宽度为250ms的低电平。
- 4. 设寄存器 0EH=0111 0100B, 年报警寄存器 0DH=08h, 月报警寄存器 0CH=08h, 日报警寄存器 0BH=08h, 小时报警寄存器 09H=20h, 位 INTAE=1、IM=0、INTS1=0、INTS0=1、12_/24=1,则到 2008 年 8 月 8 日 20 点 0 分 0 秒时, INT 脚会输出低电平。此后如清零 INTAF,则 INT 脚从低电平变成高电平。

(2) 频率中断

当 INTFE=1 时频率中断被允许; INTFE=0 时频率中断被禁止. 当设置 INTS1=1、INTS0=0 时, 即允许频率中断从 INT 脚输出. 频率中断没有标志位. INT 脚输出频率中断由控制寄存器 3 中的 FS3、FS2、FS1、FS0 位来选择确定:

频率(HZ)	FS3	FS2	FS1	FS0
0	0	0	0	0
32768	0	0	0	1
4096	0	0	1	0

1024	0	0	1	1
64	0	1	0	0
32	0	1	0	1
16	0	1	1	0
8	0	1	1	1
4	1	0	0	0
2	1	0	0	1
1	1	0	1	0
1/2	1	0	1	1
1/4	1	1	0	0
1/8	1	1	0	1
1/16	1	1	1	0
1秒	1	1	1	1

注:INT 脚输出的频率中断除了秒均是由 32768HZ 晶体振荡电路整形及分频得到的;1 秒频率中断是指输出 500ms 低电平、500ms 高电平的方波,输出低电平的下降沿与秒进位同步;在数字调整寄存器起作用时,1 秒和 1Hz 应是不相同的.

(3) 倒计时中断

与倒计时中断相关的寄存器是 8 位的倒数定时器, 当控制寄存器 2 中的位 INTDE=1 时倒计时中断被允许.

	倒数定时器的	频率源由控制寄存器	2 中的位 TDS1.	TDS0 来选定
--	--------	-----------	-------------	----------

TDS1	TDS0	定时器频率源(HZ)
0	0	4096
0	1	64
1	0	1
1	1	1/60

当 INTDE=1 且倒数定时器写入一个八位自动重置的二进制数后, 倒数定时器会按照 TDS1、TDS0 选定的频率时间来减一. 每次当倒数定时器为零时,会置倒计时中断的标志位(控制寄存器 1 中的位 INTDF)为 1。倒计时中断最长周期为 256 分钟。

当设置 INTS1=1、INTS0=1、IM=0 时,即允许倒计时中断的低电平从INT 脚输出.置 INTDF=0 时 INT 脚输出变为高电平直到下一次倒计时中断 INT 脚再次变为低电平;当设置 INTS1=1、INTS0=1、IM=1 且倒数定时周期大于 250ms 时,则从 INT 脚输出低电平时间为 250ms 连续脉冲。

当设置 INTDE=0 时倒计时中断被禁止或复位。

特别的:当重新配置倒计时中断时,需要复位倒计时计数器,即置 INTDE=0,然后再置 INTDE=1,才可以启用新的倒计时中断。

5.4 数字化时间精度调整电路(12H 地址)

利用数字化时间精度调整电路可以每20秒改变当前1秒所包含的32768Hz 脉冲的个数,从而到达时钟走时调整,使 SD2401 保持高的走时精度.相关寄存器为时间调整寄存器(内部地址12H):

时间调整寄存器:(缺省值为 00H)

D7	D6	D5	D4	D3	D2	D1	D0
0	F6	F5	F4	F3	F2	F1	F0

F6^F0:时间调整位;时间调整电路是在当秒计数为00,20,40时刻,根据预先设置的数据(F6^F0)改变1秒时钟内计数的个数.通常每32768个脉冲为1秒(对寄存器预设初值,才能激活整个调整电路).

当 F6 为"0"时,产生1 秒的寄存器计数脉冲将增加为 $32768+((F5,F4,F3,F2,F1,F0)-1)\times2$; 当 F6 为"1"时,产生1 秒的寄存器计数脉冲将减少为 32768-((/F5,/F4,/F3,/F2,/F1,/F0)+1) ×2; (/F5 是 F5 的反码,其它类同)

当(F6, F5, F4, F3, F2, F1, F0)预设为(*, 0, 0, 0, 0, 0, *)时,产生1秒的寄存器计数脉冲不变.

例: 当(F6, F5, F4, F3, F2, F1, F0)=(0, 1, 0, 1, 0, 0, 1) 且当 00, 20, 40 秒时刻时, 寄存器计数脉冲 变为 $32768+(41-1)\times 2=32848$;

当(F6, F5, F4, F3, F2, F1, F0)=(1, 1, 1, 1, 1, 1, 0)且当00,20,40秒时刻时,寄存器计数脉冲变为32768-(1+1) ×2=32764;

当(F6, F5, F4, F3, F2, F1, F0)=(0, 0, 0, 0, 0, 0, 1) 且当 00, 20, 40 秒时刻时, 寄存器计数脉冲保持为 32768 不变.

因为每20秒增加或减少计数脉冲的最小个数为2,,所以时钟调整寄存器的最小调整精度是:2/(32768×20)=3.05ppm.

注意: 时钟调整电路仅是调整的时钟走时,并不对晶振本身频率调整,所以 32.768KHZ 脉冲输出没有变化.

时钟调整寄存器的调整值计算方法:

1) 当晶振频率大于目标频率(32768HZ),则需要增加 1 秒内的计数脉冲:

其中:晶振频率是从 INT 脚测出的频率中断标称为 32768HZ 的频率(即 FS3、FS2、FS1、FS0=0001),下同;

调整值是设置 F6~F0 的数值,该数值是用二进制补码形式表示.下同

2) 当晶振频率小于目标频率(32768HZ),则需要减少1秒内的计数脉冲:

3) 当晶振频率等于目标频率(32768HZ),则不需要改变 1 秒内的计数脉冲. 调整值=0,+1,-64,-63 或者缺省.

计算调整数值大小示例:

- 1) 晶振频率=32770HZ, 目标频率=32768HZ 调整值=(32770-32768+0.1)/(32770*2/(32768*20))=(32770-32768)*10+1=21 故设置(F6.F5,F4.F3,F2.F1,F0)=(0.0.1,0.1,0.1)
- 2) 晶振频率=32762HZ, 目标频率=32768HZ 调整值=(32762-32768)/(32762*2/(32768*20))=(32762-32768)*10=-60 因为-60的7位补码是80H-3CH=44H 故设置(F6,F5,F4,F3,F2,F1,F0)=(1,0,0,0,1,0,0)

经过数字化时间精度电路调整后,时钟精度与目标频率相差±1.5ppm(在室温下)

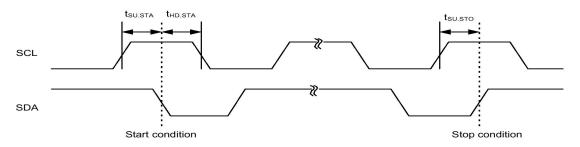
但是要注意:

- 1) 时间调整电路不能改变从 INT 输出频率中断的频率;
- 2) 最大调整范围:
 - a. 晶振频率大于目标频率时,调整数值范围(F6,F5,F4,F3,F2,F1,F0)=(0,0,0,0,0,0,0)到(0,1,1,1,1,1),实际可调范围从-3.05ppm到-189.2ppm.
 - b. 晶振频率小于目标频率时,调整数值范围(F6,F5,F4,F3,F2,F1,F0)=(1,1,1,1,1,1)到(1,0,0,0,0,1,0),实际可调范围从+3.05ppm 到+189.2ppm.
- **特别的**: 虽然 SD2401 的上电复位功能会在所有电源(含电池)下电时复位数字调整寄存器 12H 为 0,但在电源环境比较恶劣的条件下并不能绝对保证芯片每一次上电的可靠复位。针对 绝大多数不使用数字调整功能的用户,为了保证走时精度的可靠性,强烈建议能在写时 间的程序里加上清 12H 寄存器为 0 的程序。
- **5.5 通用 RAM**(14H~1FH 地址)

SD2401 内部提供 12 个字节的通用静态 RAM 供用户存储数据. 通用 RAM 的缺省值是 XXH. (即不确定值)

5.6 其它控制/状态位

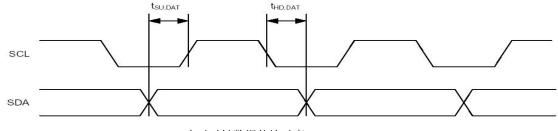
- (1) WRTC1、WRTC2、WRTC3 位:寄存器 (00H~1FH) 写允许位。即 WRTC1=1、WRTC2=1、WRTC3=1 时写允许.注意置位有先后顺序,先置 WRTC1 为 1,后置 WRTC2、WRTC3 为 1;当 WRTC1=0、WRTC2=0、WRTC3=0 时则写禁止,同样置位有先后顺序,先置 WRTC2、WRTC3 为 0,后置 WRTC1 为 0。当写禁止时,除了以上三位可以写以外,从 00H 到 1FH 所有的寄存器均不可以写。写禁止并不影响读操作。
- (2) ARST 位: 自动复位使能位. 对控制寄存器 1 的 INTAF、INTDF、BAT 位的自动复位进行使能/禁止. 当 ARST=1 时, 对控制寄存器 1 进行一次有效的读操作后, 以上三个状态位均复位为"0". 若 ARST=0, 则需要对 INTAF、INTDF、BAT 位进行手动复位方可清零。
- (3) FOBAT 位:FOBAT=0 时, 当处于 VBAT 模式下, INT 脚输出禁止; FOBAT=1 时, 当处于 VBAT 模式下, INT 脚输出允许. 该位在 VDD 模式下不起作用. (要注意在 VBAT 模式下 INT 脚输出会引起电池的消耗)
- (4) RTCF 位: 上电位, 全部电源失效后再上电则该位置"1", 为只读位. 上电后的第一次有效写(只要写一个字节即可)就可以将RTCF 位清为"0".


6. 串行 IIC 接口

- 6.1 **SD2401** 通过两线式 IIC 串行接口方式接收各种命令并读写数据。两线式串行 IIC 接口方式描述如下:
 - (1) 开始条件

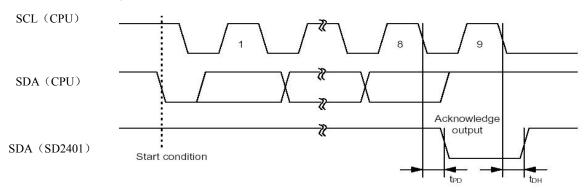
当 SCL 处于高电平时,SDA 由高电平变成低电平时构成一个开始条件,对 SD2401 的所有操作均必须由开始条件开始。

(2) 停止条件


当 SCL 处于高电平时,SDA 由低电平变成高电平时构成一个停止条件,此时 SD2401 的 所有操作均停止,系统进入待机状态。

实时时钟的串行接口

(3) 数据传输


当 SCL 为低电平,且 SDA 线电平变化时,则数据由 CPU 传输给 SD2401(高位在前、低位在后,下同);当 SCL 为高电平,且 SDA 线电平不变时,则 CPU 读取 SD2401 发送来的数据;当 SCL 为高电平,且 SDA 电平变化时,SD2401 收到一个开始或停止条件。

实时时钟数据传输时序

(4) 确认

数据传输以 8 位序列进行。SD2401 在第九个时钟周期时将 SDA 置位为低电平,即送出一个确认信号(Acknowledge bit,以下简称"ACK"),表明数据已经被其收到。

实时时钟确认信号

6.2 数据/指令传输格式

当 CPU 发出开始条件与实时时钟建立连接后, CPU 首先通过 SDA 总线连续输出 7 位器件地址和 1 位读/写指令来唤醒 SD2401.

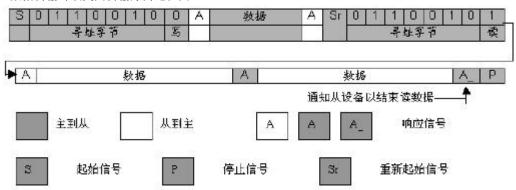
(1) 器件代码:

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
0	1	1	0	0	1	0	R/W

其中高 7 位 BIT7~BIT1 称 "器件代码",它代表实时时钟的器件地址,固定为 "0110010" ;BIT0 为读/写位,"1"为读操作,"0"为写操作。

(2) 数据传输格式:

在数据发送/接收时停止信号到来时,将结束其数据传输,同时内部五位地址归零(注:内部五位地址的 缺省值为 00000B),如果只有开始信号,而没有结束信号,接着重新产生起始信号,则还要重新设置器件代 码(在传输方向需要改变时,就用这种传输方式,如下面的读数据方式1).


主设备向从设备写入数据过程图

S 0 1 1 0 0 1	0 0	А	数据	Α	教楊	Α	P
寻址字节	写			-	**		

主设备向从设备直接读取数据过程图

S	0	1	1	0	0	1	0	1	Α	数据	Α	数据	A_	P
			哥	址字	节	A - 40		诶						

数据传输时改变其传输方向过程图

(3)SD2401 数据传输的写模式

- . 先送 7 位器件地址(0110010),第 8 位送入写命令("0"), 第 9 位是 SD2401 的响应位(ACK),SD2401 进入 写状态:
- . 接下来一个字节, 高 3 位是传输模式(写状态时, 传输模式定义为"000"),低 5 位确定 SD2401 的内部地址(00H~1FH),,第 9 位是 SD2401 的响应位;
- . 开始写数据,每写完 1 个字节的数据之后,都经过 1 位的响应信号才能写下 1 字节的数据;如果要结束写数据过程,则在 ACK 后送出停止命令即可.

SD2401 写数据示例(向 14H,15H 地址写数据):

特别注意:1.除了 WRTC1、WRTC2、WRTC3 三个写允许位,对寄存器(00H~1FH)的写操作必须确认芯片处于写允状态,否则写无效.

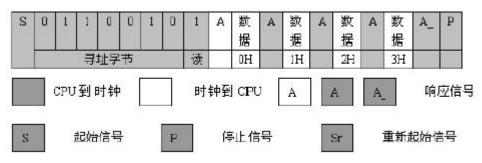
- 2. 写时间同步:每次对实时时间寄存器的写操作时,都会对秒以下的内部计数器清零,使时间同步。
- 3. 从当前地址开始,每次读写完一个字节地址自动加 1 直到 1FH,读写完 1FH 后地址自动加 1 后为 00h.
- 4. 如果写入的时间数据不存在,则不改写相对应的时间寄存器的值.
- 5. 为了提高数据的可靠性,当写完成后,应将芯片置于写禁止状态。(参见 5.6)

(4)SD2401 数据传输的读模式

SD2401 有两种读数据方法:

I)读方法 1:从指定的内部地址中读取数据

- . 与写模式的前两步一样;
- . 重新发出开始命令以改变两线接口数据传输方向;
- . 再送 7 位器件地址(0110010),第 8 位送入读命令("1"), 第 9 位是 SD2401 的响应位(ACK),SD2401 进入读状态;
- . 开始读数据,每读完1个字节的数据之后,CPU 都要送出1位的响应信号(ACK,低电平)才能读下1字节的数据;如果想要结束读数据过程,则 CPU 要送出1位的响应信号(ACK_,高电平), ACK_后送出停止命令即可.


SD2401 读数据方法 1 示例(从 7H~9H 地址读取数据):

II)读方法 2:直接读取数据(从内部地址 00h 开始)

- . 开始信号后,先送 7 位器件地址(0110010),第 8 位送入读命令("1"), 第 9 位是 SD2401 的响应位 (ACK),SD2401 进入读状态;
- . 每读完 1 个字节的数据之后,CPU 都要送出 1 位的响应信号(ACK,低电平)才能读下 1 字节的数据;如果想要结束读数据过程,则 CPU 要送出 1 位的响应信号(ACK_,高电平), ACK_后送出停止命令即可.

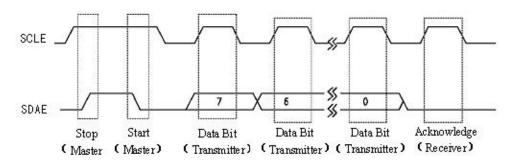
SD2401 读数据方法 2 示例(从 00H 地址开始读取数据):

(5) SD2401 在特殊条件下的数据传输

为了保证读写数据的有效性,SD2401的两线通信开始到结束仅在此 0.5S 秒之内,如此可避免 总线挂死的现象。

因此在SD2401中, IIC通信方式会在第一个起始信号到来之后的0.5秒之内自动终止本次通

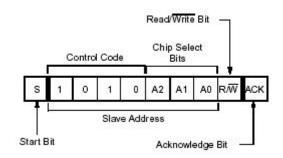
述。


信。

所以,要注意:从开始信号进行读/写数据,直到停止信号,读/写操作过程必须在0.5 秒之内完成。特别地:在进入 V_{BAT} 模式后 IC 会禁止 IIC 总线的通信.

7. 串行 EEPROM 电路 (适用于 SD2401 EEPROM 系列中的 F/B/C/D/E 型)

1. E²PROM 数据传输协议(I²C 接口)


(1)开始条件/(2) 停止条件/(3)数据传输/(4)应答信号(Acknowledge bit) 如图所示,以 SCLE 对应 SCL,以 SDAE 对应 SDA,参照本文有关实时时钟串行接口部分的描

E2PROM 数据传输

2. 操作指令

当 CPU 要对 SD2401L 中的 E²PROM 进行操作时,首先发出开始信号给 SD2401L,然后 CPU 发出包括四位器件代码、三位页选码、一位读/写指令的八位数据,即"从器件地址"(SLAVE ADDRESS)。前四位固定为"1010",一位读/写指令表明进行何种操作(读操作为"1",写操作为"0")。

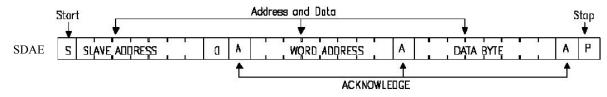
这八位数据中的另外三位页选码根据 SD2401L 具体的型号而有所不同:

- (1) 当为 **B**型 SD2401L 时,该三位中的前两位不固定,为"xx",后一位为页选码(E²PROM 对数据的操作分为两页进行,每页的地址为00一FFH,"0"为第一页,"1"为第二页)。
- (2) 当为 C 型 SD2401L 时,该三位均为页选码(E^2PROM 对数据的操作分为八页进行,每页的地址为 00—FFH)。
- (3) 当为 D 型 SD2401L 时,该三位被固定为"000"。
- (4) 当为 E 型 SD2401L 时,该三位被固定为"000"。
- (5) 当为 F 型 SD2401L 时,该三位不固定,为"xxx"。

E2PROM 操作指令表

型号	器件代码	三位页选码	操作码
B型	1010	xx0~xx1	读"1"写"0"
C 型	1010	000~111	读"1"写"0"
D型	1010	000	读"1"写"0"

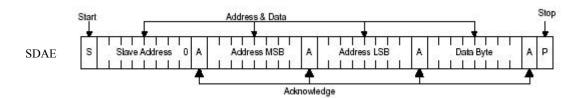
E 型	1010	000	读"1"写"0"
F 型	1010	xxx	读"1"写"0"


3. 写操作

写操作可分为两种,单字节写操作和页写操作。单字节写操作指每次只写入一个字节的数据。页写指一次可以写入多个字节的数据。由于内置 NVE²PROM 的存储容量的大小不同,因此在进行写操作时,其操作方式有所不同。

(1) 单字节写操作

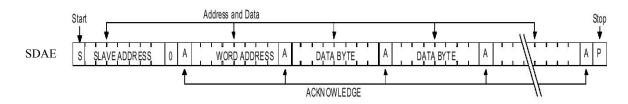
A) B型、C型和F型SD2401L单字节写操作


在单字节写操作下,主器件发送起始信号和从器件地址信息(R/\overline{W} 位置0) 给从器件。在从器件送回应答信号后,主器件发送一个8 位地址字写入 E^2 PROM的地址计数器。主器件在收到 E^2 PROM的应答信号后再发送数据到被寻址的存储单元, E^2 PROM再次应答并在主器件产生停止信号后开始内部数据的擦写。在内部擦写过程中(最大持续时间10ms), E^2 PROM 不再应答主器件的任何请求。

B型和C型SD2401L E2PROM单字写操作

B) D型和E型SD2401L单字节写操作

在单字节写操作下,主器件发送起始信号和从器件地址信息(R/W 位置0) 给从器件。在从器件送回应答信号后,主器件首先发送高八位地址给 E^2PROM , E^2PROM 再次应答后主器件发送低八位地址给 E^2PROM ,主器件在收到 E^2PROM 的应答信号后再发送数据到被寻址的存储单元, E^2PROM 再次应答并在主器件产生停止信号后开始内部数据的擦写。在内部擦写过程中(最大持续时间10ms), E^2PROM 不再应答主器件的任何请求。

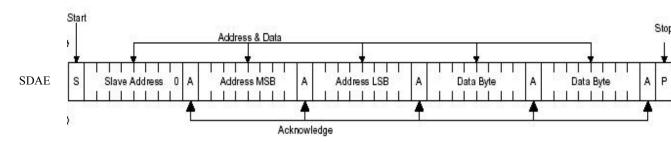


D型和E型SD2401L E²PROM单字写操作

(2) 页写操作

I. F型 SD2401L 页写操作

在页写操作下,单个写周期内 E²PROM 可以被写入 8 个字节的数据。页写操作的启动与该型号的单字节写操作一样,区别在于传送了一字节数据后允许主器件继续发送 7 个字节的数据。每传送完一个字节数据后,E²PROM 响应一个应答信号,同时内部页缓冲器地址自动加 1。若页缓冲器地址计数器的值到达边界时,该地址计数器的值又将从 07H 变为 0H。在主器件产生停止信号后开始内部数据的擦写。在内部擦写过程中(最大持续时间 10ms), E²PROM 不再应答主器件的任何请求。


B型、C型和F型SD2401L E²PROM页写操作

II. B型和C型SD2401L页写操作

在页写操作下,单个写周期内 E^2 PROM 可以被写入 16 个字节的数据。页写操作的启动与该型号的单字节写操作一样,区别在于传送了一字节数据后允许主器件继续发送 15 个字节的数据。每传送完一个字节数据后, E^2 PROM 响应一个应答信号,同时内部页缓冲器地址自动加 1。若页缓冲器地址计数器的值到达边界时,该地址计数器的值又将从 0FH 变为 0H。在主器件产生停止信号后开始内部数据的擦写。在内部擦写过程中(最大持续时间 10ms), E^2 PROM 不再应答主器件的任何请求。

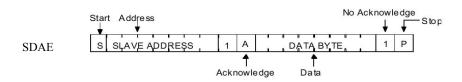
III. D型 SD2401L 的页写操作

在页写操作下,单个写周期内 E²PROM 可以被写入 32 个字节的数据。页写操作的启动与该型号的单字节写操作一样,区别在于传送了一字节数据后允许主器件继续发送 31 个字节的数据。每传送完一个字节数据后,E²PROM 响应一个应答信号,同时内部页缓冲器地址自动加 1。若页缓冲器地址计数器的值到达边界时,该地址计数器的值又将从 1FH 变为 0H。在主器件产生停止信号后开始内部数据的擦写。在内部擦写过程中(最大持续时间 10ms),E²PROM 不再应答主器件的任何请求。

D型和E型SD2401LE2PROM页写操作

IV. E型 SD2401L 的页写操作

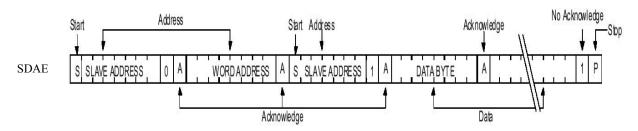
在页写操作下,单个写周期内 E^2 PROM 可以被写入 64 个字节的数据。页写操作的启动与该型号的单字节写操作一样,区别在于传送了一字节数据后允许主器件继续发送 63 个字节的数据。每传送完一个字节数据后, E^2 PROM 响应一个应答信号,同时内部页缓冲器地址自动加 1。若页缓冲器地址计数器的值到达边界时,该地址计数器的值又将从 3FH 变为 0H。在主器件产生停止信号后开始内部数据的擦写。在内部擦写过程中(最大持续时间 10ms), E^2 PROM 不再应答主器件的任何请求。

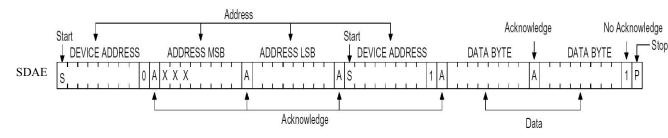

4. 读操作

除读/写位被设定为"1"外,CPU以与写操作同样的方式初始化读操作。读操作有三种方式:立即地址读操作,随机地址读操作,连续读操作。同样由于内置 NVE²PROM 的存储容量的大小不同,因此在进行读操作时,其操作方式有所不同。

(1) 立即地址读操作

B型、C型、D型、E型、F型这五种型号的立即地址读操作的形式是一样的。 E^2PROM 的地址计数器内容为最后操作字节的地址加 1, 也就是说如果上次读/写的操作地址为 N,则立即

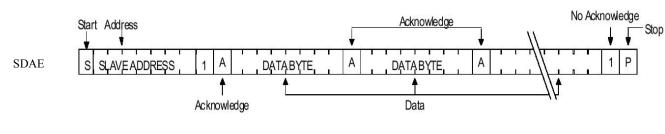

读的地址从地址 N+1 开始。如果 N 为边界地址(如 0FH、0FH、1FH、3FH、07H,分别对应 B、C、D、E、F 不同型号),则寄存器将会翻转到地址 0 继续输出数据。在 E^2 PROM 接收到从器件地址以后(R/W=1),它首先发送一个应答信号,然后发送一个 8 位字节数据。主器件不需要发送一个应答信号,但是要产生一个停止信号。


E²PROM读当前地址操作

(2) 随机地址读操作

随机读操作允许主器件对寄存器的任意字节进行读操作。主器件首先通过发送起始信号、从器件地址和它想读取的字节数据的地址(B型、C型和F型为单字节地址,而D型和E型为双字节地址)执行一个伪写操作。在E²PROM应答之后,主器件重新发送起始信号和从器件地址(此时R/W 位置1),E²PROM响应并发送应答信号,然后输出所要求的一个8 位字节数据,主器件不发送应答信号但产生一个停止信号。

B型、C型和F型SD2401L的E2PROM随机地址读操作



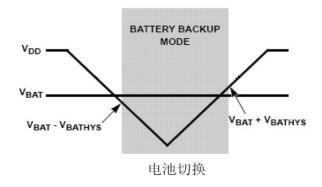
D型和E型SD2000的E2PROM随机地址读操作

(3) 连续读操作

B型、C型、D型、E型、F型这五种型号的连续地址读操作的形式也是一样的。连续读操作可通过立即读或选择性读操作方式启动。在E²PROM发送完第一个8 位字节数据后,主器件产生一个应答信号来响应,告知E²PROM主器件要求更多的数据。对应每个主器件产生的应答信号E²PROM将发送一个8 位数据字节。当主器件不发送应答信号而发送停止信号时结束此操作。

从E²PROM输出的数据按顺序由N 到N+1 输出。读操作时的地址计数器在E²PROM整个寄存器区域增加,这样整个寄存器区域可在一个读操作内全部读出。若地址计数器的值到达边界时,该值将分别从 1FFH、7FFH、1FFFH、7FFFH、FFH(对应B型、C型、D型、E型、F型)变为000H。

E2PROM 连续读操作


8. 备用电源切换电路

SD2401 具有后备电池自动切换功能, 当芯片检测到主电源 V_{10} 掉到后备电池电压以下时自动转为由内部的后备电池供电, 芯片进入后备电池供电模式。

从正常模式 (V_{DD}) 切換到后备电池供电模式 (V_{BAT}) 要从 V_{DD} 过渡到 V_{BAT} 模式,必须具备以下条件: 条件: $V_{DD} < V_{BAT} - V_{BATHYS}$, 其中 $V_{BATHYS} \approx 300 \text{mV}$

从后备电池供电模式 (V_{BAT}) 切换到正常模式 (V_{DD}) 在遇到以下条件时,SD2401 会从 V_{BAT} 切换到 V_{DD} 模式: 条件: $V_{DD} > V_{BAT} + V_{BATHYS}$, 其中 $V_{BATHYS} \approx 300 \text{mV}$

电源控制情况如图所示:

为提供更低的电源,IIC 总线在后备电池供电模式中被禁止,除此之外,在后备电池供电模式中实时时钟的所有功能均为正常。除了 SCL 和 SDA 以外,在后备电池供电模式中,SD2401 所有的输入端和输出端均有效,除非通过控制寄存器来禁止。在后备电池供电模式电池电压低到 1.5V 时,用户 SRAM 仍可保存数据。

电源失效检测:

SD2401 有一个实时时钟失效位(RTCF),用于检测总电源失效。它在器件丢失所有电源($V_{\tiny DD}$ 和后备电池)之后使用户可以确定器件是否已上电。

9. 出厂设置

在出厂之前,对 SD2401 已做了时间和控制寄存器初始化设置:

时间为北京标准时间,禁止 INT 脚输出信号,数字调整寄存器初值。

实时寄存器: 当前的北京时间, xx (年), xx (月), xx (日), x (星期), xx (时), xx (分), x (秒)

10. 电源管理电路

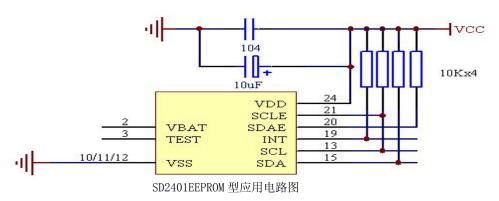
1内部电源管理电路(电源切换电路)

当 VDD>3.0V 时,则内部电池停止供电,改由外部电源 VDD 供电。在外部电源掉电情况下,内部电池保证时钟继续可靠运行.

SD2401 内置电池充电电路,当 V_{DD} 电压超过 3.0V 时,内部充电自动进行直至电池充满。(内部充电过程不需要用户干预,会自动完成)。

常温下,内部充电电池一次充满时的电量为 5.5mAh,在外电源掉电情况下时钟走时时间为半年左右;电池可以满充 100次(注:满充的定义是指将电池从 0V 充到 3.0V),等效总电量为 550mAh;如果从电池电量的 90%开始充电,则电池的充电此数为 1000次.

2. 稳压电路


模块内部有稳压电路,可以对外加电源电压进行滤波、稳压,使模块工作始终工作在稳定状态。

11. 使用说明

- 1. 为了防止电路噪声问题,请在此芯片的旁边放置 0.1uF 旁路电容.
- 2. 为了防止干扰, 在 PCB 制作时请保证芯片底部无大电流信号通过, 最好能铺地.

12. 应用电路与程序

(1)应用电路:

(2)程序下载网址: http://www.whwave.com.cn/download/SD2401/SD2401ALL.asp

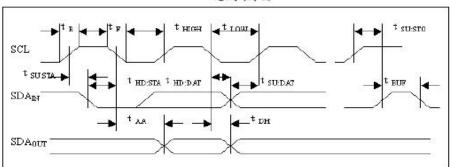
13. 极限参数

注: 强度超出所列的极限参数可能导致器件的永久性损坏。这些仅仅是极限参数,并不意味着在极限条件下或在 任何其它超出推荐工作条件所示参数的情况下器件能有效地工作。延长在极限参数条件上的工作时间 会影响器件的可靠性。

14. 时钟部分交直流特性

a) 直流特性

SYMBOL	PAEEPROMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
V_{DD}	Main Power Supply		3.3		5.5	V	
V _{BAT}	Battery Supply Voltage		1.5		5.5	V	
T	Supply Current	V _{DD} =5V		1.6	3.0	μА	
I_{DD1}		V _{DD} =3.3V		1.0	1.2	μА	
I_{DD2}	Supply Current win IIC Active	V _{DD} =5V		40	120	μА	
I _{BAT}	Battery Supply Current	V _{BAT} =3V		800		nA	
I_{L1}	Input Leakage Current On SCL			100		nA	
I _{LO}	I/O Leakage Current On SDA			100		nA	
V _{BATHYS}	V _{BAT} Hysteresis			300		mV	
INT V _{OL}	Output Low Voltage	$V_{DD}=5V$ $I_{OL}=3mA$			0.4	V	
		$V_{DD}=5V$ $I_{OL}=3mA$			0.4	V	


b) **掉电时序**温度=-40℃至+85℃

SYMBOL	PAEEPROMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
V _{DD br}	V _{DD} negative Siewrate				10	V/ms	

c) 交流特性

SYMBOL	PAEEPROMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
$V_{\rm IL}$	SDA and SCL input buffer LOW voltage		-0.3		0.3× V _{DD}	V	
V_{IH}	SDA and SCL input buffer HIGH voltage		0.7×V _D		V _{DD} +0.3	V	
Hyteresis	SDA and SCL input buffer hysteresis		0.05×V			V	
V_{OL}	SDA output buffer LOW voltage sinking 3mA		0		0.4	V	
C _{pin}	SDA and SCL pin capacitance	T_A =25 °C f=1MHZ V_{DD} =5V V_{IN} =0V V_{OUT} =0V			10	pF	
f_{SCL}	SCL frequency	1001			400	kHZ	
$t_{\rm IN}$	Pulse width suppression time at SDA and SCL inputs				50	ns	
taa	SCL falling edge to SDA output data valid	SCL falling edge crossing 30% of $V_{\rm DD}$ until SDA exits the 30% to 70% of $V_{\rm DD}$ window			900	ns	
$t_{ m BUF}$	Time the bus must be free before the start of a new transmission	SDA crossing 70% of V _{DD} during a STOP condition, to SDA crossing 70% of V _{DD} during the following START condition	1300			ns	
t _{LOW}	Clock LOW time	Measured at the 30% of V _{DD} crossing	1300			ns	
t_{HIGH}	Clock HIGH time	Measured at the 70% of V _{DD} crossing	600			ns	
t _{SU:STA}	START condition setup time	SCL rising edge to SDA falling edge Both crossing 70% of V _{DD}	600			ns	
t _{HD:STA}	START condition hold time	From SDA falling edge crossing 30% of $V_{\rm DD}$ to SCL falling edge crossing 70% of $V_{\rm DD}$	600			ns	
tsu:dat	Input data setup time	From SDA exiting the 30% to 70% of V _{DD} window ,to SCL rising edge crossing 30% of V _{DD}	100			ns	
t _{HD:DAT}	Input data hold time	From SCL falling edge crossing 30% of V_{DD} to SDA entering the 30% to 70% of V_{DD} window	0		900	ns	
tsu:sto	STOP condition setup time	From SCL rising edge crossing 70% of $V_{\rm DD}$,to SDA rising edge crossing 30% of $V_{\rm DD}$	600			ns	
t _{HD:STO}	Output condition hold time	From SDA rising edge to SCL falling edge .Both crossing 70% of $V_{\rm DD}$	600			ns	
$t_{ m DH}$	Output data hold time	From SCL falling edge crossing 30% of V_{DD} ,until SDA enters the 30% to 70% of V_{DD} window.	0			ns	
t_R	SDA and SCL rise time	From 30% to 70% of V _{DD}	20+ 0.1×Cb		300	ns	
t_{F}	SDA and SCL fall time	From 70% to 30% of V _{DD}	20+ 0.1×Cb		300	ns	
Cb	Capacitive loading of SDA or SCL	Total on-chip and off-chip	10		400	PF	
R_{PU}	SDA and SCL bus pull-up resistor off-chip	Maximum is determined by t_R and t_F For Cb=400pF,max is about 2~2.5k Ω For Cb=40pF,max is about 15~20k Ω	1			kΩ	

总线时序图

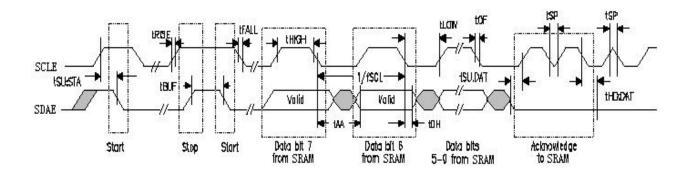
15. 串行 NVE²PROM 部分电气特性:

(1) 直流电气特性

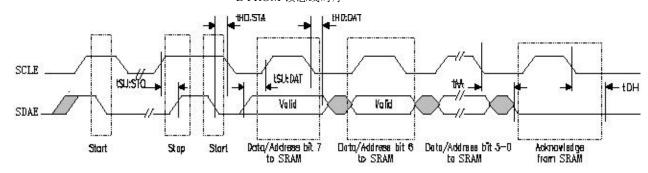
直流电气特性(Ta =-40° C to 85° C, V_{DD} = 3.3V to 6.0V)

					_	
符号	参数	最小值	典型值	最大值	单位	备注
V_{DD}	主电源	3.3	5.0	6.0	V	1
I_{DD}	VDD 供电电流(写入时)			3	mA	
I_{DD}	VDD 供电电流(读出时)			1	mA	
I_{SB}	休眠电流			100	μА	
I_{LI}	输入漏电流	-10		10	μА	
I_{LO}	输出漏电流	-10		10	μА	
V_{IL}	输入低电压			VDD×0.3	V	
V_{IH}	输入高电压	VDD×0.7			V	
V _{OL}	输出低电压			0.4	V	
V _{HYS}	输入滞后	$V_{DD} \times 0.05$			V	2

备注: 1. 参考电压 VSS。

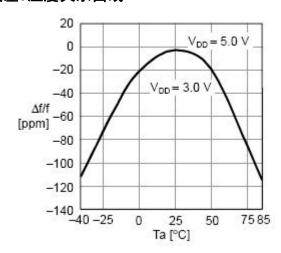

2. 此参数是经抽样而非 100%测试得到的。

(2) 交流电气特性


交流电气特性(Ta = -40° C to +85° C, V_{DD} = 3.3V to 6.0V)

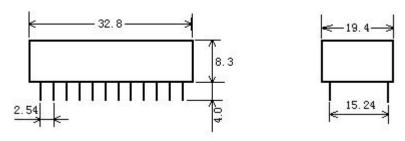
符号	参数	标准	模式	快速机	莫式	单位
		最小值	最大值	最小值	最大值	
fSCLE	SCLE 时钟频率	0	100	0	400	KHz
tSP	噪音抑制时间(SCLE,SDAE 保持稳		50		50	ns
	定)					
tAA	SCLE 低电平到 SDAE 输出有效		3		0.9	μs
tBUF	在新传输前释放总线	4.7		1.3		μs
tHD:STA	开始条件保持时间	4.0		0.6		μs
TLOW	时钟低电平时间	4.7		1.3		μs
tHIGH	时钟高电平时间	4.0		0.6		μs
tSU:STA	开始条件设定时间	4.7		0.6		μs
tHD:DAT	数据输入保持	0		0		ns
tSU:DAT	数据输入设定	250		100		ns
tRISE	SDAE,SCLE 上升时间		1000		300	ns
tFALL	SDAE,SCLE 下降时间		300		300	ns
tSU:STO	停止条件设定	4.0		0.6		μs
tWC	写入延时(字节或页)		10		10	ms
tOF	输出下降时间(VIN 从最小到最大)		250		250	ns

对于表中的各参数,请参照下面的时序图。



E²PROM 读总线时序

E2PROM 写总线时序


16.频率误差&温度关系曲线

17. 芯片顶部字符说明

18. 封装尺寸(单位:毫米)

SD2401 系列封装尺寸(管脚直径: 0.5mm)

■ 编后语

感谢您阅读本资料。由于经验和水平的欠缺,本文难免有错误和遗漏。如果您在使用过程中发现错误或不恰当的地方,请拨打电话: 0755-83246178 或请 E-mail: support@whwave.com.cn, 我们将尽快予以答复。

谢谢您的支持及合作!

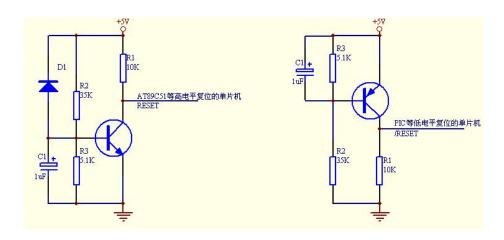
注:

本资料中的内容如有变化,恕不另行通知。

本资料提供的应用线路及程序仅供参考,本公司不承担由此而引起的任何损失。

由于本公司的产品不断更新和提高,希望您经常与本公司联系,以索取最新资料。

本公司不承担在任何使用过程中引起的侵犯第三方专利和其它权利的责任。


注:本文档受中国版权法保护,非授权禁止拷贝、复制、引用或传播 SD 及 WAVE 为我公司注册商标.

深圳市兴威帆电子技术有限公司

附录:

一.SD2401 系列应用中硬件注意事项:

- (1) 对 SD2401 及 MCU 的电源~地之间加 104 电容去高频。
- (2) 对 SD2401 及 MCU 所在的板数字电源~地的输入端加 220uF 以上的电解及 104 电容去除电源扰动.
- (3) 为了防止干扰, 在 PCB 制作时请保证芯片底部无大电流信号通过, 最好能铺地.
- (4) 对 MCU 的复位端尽量采用可靠的复位方式,而摒弃阻容复位或直接连到 VDD 的方式.以下推荐廉价的三极管复位方式,当然用电压检测器或专用复位电路就更好啦.

图中 R2,R3 为分压电阻,其选值可用以下公式:

Vbe/Vrst=R2/(R2+R3)

其中:Vbe 为三极管 b 极和 e 极之间导通电压 Vrst 为单片机的复位电压

- C1 为延时电容
- D1 为延时电容的放电二极管,可选用.
- (5) SD2401 不用的脚接地(VBAT.VOUT.INT 和 TEST 脚除外).
- (6) 电源电压>=3.3V !!! 主要是因为正常工作时需要 VDD>VBAT。

二.SD2401 系列应用中软件注意事项

- (1) 软件上电开始做一个几百毫秒的延时,等 MCU 端口稳定后再去进行读写操作。
- (2) 时钟最多半秒才读一次:这样做主要目的是考虑到时间数据的改变需要 1S,频繁去读的话是在做无用功,不但会加大电源功耗,而且会引入干扰。

IIC 总线"START"里:在置 SDA 为高后要再判断 SDA 是否为高,即 SDA 是否被箝位为低,否则等 SDA 线置高。.

在写命令字时:要判断 ACK 是否正常,否则退出

- (3) IIC 总线"STOP"里:在置 SDA 为高后要再判断 SDA 是否为高,即 SDA 是否被箝位为低,否则多置 SCL 脉冲让 SDA 线释放为高.在写命令字时:要判断 ACK 是否正常,否则退出,不要再进行下面的操作。
- (4) 写时间时,强烈建议对时间调整寄存器(12H)清零,在网上有51程序可参考。

三.有关 SD2401 的一些问题回答

(1) 时钟精度:

SD2401 的精度指标为常温 25 度下±5ppm,即年误差少于 2.6 秒.

出厂之前对每一只 SD2401 都用超高精度的仪器和严格的程序做了校准,所以能保证精度.有人说他拿到 SD2401 的精度好像不准,一般问题出在参考时钟上,通常可用电信 12117 台作基准来验证,但如用电脑那就差远了,因为电脑的时钟精度一般都不高,通常大于 30ppm.最好用网络校时软件.电脑版校时软件:

http://www.whwave.com.cn/download/wave/AboutTime.rar

手机安卓版网络/GPS 校时软件:

http://zhushou.360.cn/detail/index/soft id/3179034?from=onebox

(2) 温度对精度的影响:

对目前的没有温度补偿的SD2401系列时钟:在低温(-40)或高温(80)时,因为晶振的温度特性的原故,时钟误差一般大于-100ppm.即年误差超过52.56分钟

如果要更高精度,可选内置温度传感的 SD2404 时钟或在 SD2401 系列外加温度传感器来补偿。

(3) 内部电池电压的测量:

利用 SD2401 测试脚-TEST 脚可以测量内部电池的电压,方法是:

a. 在 VDD 脚没加电时,拿万用表测得 TEST 脚电压,记为 V1

则内部电池电压 VBAT=V1x2

注意:以上测 TEST 脚电压须用同一个万用表,因为不同的万用表内阻可能有差别,

而内部电池到 TEST 脚之间的电阻是 10M 欧姆,所以如用不同内阻的万用表会从 TEST 脚测得不同的电压.

通常内部电池电压>1.5v时都可以保证时钟内部的走时.

(4) 充电电池的充电方式:

对 SD2401 系列中内置充电电池的产品如 SD2401

- a.在生产过程中电池电量已经充满过一次,出厂时 SD2401 的 TEST 脚电压为 1.18V 以上(内部充电电池电压为 2.30V 以上)。
- b.在用户板上电的情况下,SD2401 就一直在充电→放电→充电的循环,其中放电主要是充电电池的自放电,通常一年时间电池的自放电电量有 2~5%,当电池电压降到 3.0V 时就又开始充电即通常所说的**浮充**.注:这些过程都是自动完成的,您不用管它.
- c. 充电次数: 在整过电池寿命里,这一过程,如完全放完电再充满电,最多 100 次;

如果每次放电至电量的10%再充满电,最多1000次;

如果每次放电至电量的1%再充满电,最多10000次;.

- d.在用户板下电的常温情况下,充满电的电池可维持时钟工作近半年时间,也就是说,您近半年时间 不上电,等再次上电时时钟仍然在工作.
- e.如 d 的情况,等电充满的时间通常要三天(72 小时).